首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   29篇
  国内免费   32篇
化学   277篇
晶体学   4篇
力学   17篇
综合类   2篇
数学   91篇
物理学   189篇
  2024年   2篇
  2023年   46篇
  2022年   20篇
  2021年   36篇
  2020年   42篇
  2019年   31篇
  2018年   17篇
  2017年   11篇
  2016年   21篇
  2015年   24篇
  2014年   33篇
  2013年   28篇
  2012年   36篇
  2011年   16篇
  2010年   13篇
  2009年   13篇
  2008年   12篇
  2007年   17篇
  2006年   29篇
  2005年   5篇
  2004年   8篇
  2003年   13篇
  2002年   11篇
  2001年   28篇
  2000年   12篇
  1999年   27篇
  1998年   8篇
  1997年   14篇
  1996年   3篇
  1995年   3篇
  1982年   1篇
排序方式: 共有580条查询结果,搜索用时 15 毫秒
1.
Zhu  Hong  Zeng  Xiangbing  Han  Tianli  Li  Xuexue  Zhu  Shuguang  Sun  Bai  Zhou  Ping  Liu  Jinyun 《Journal of Solid State Electrochemistry》2019,23(7):2173-2180
Journal of Solid State Electrochemistry - Since conventional graphite-based anode possesses a low capacity, seeking for high-capacity anode candidates becomes significant for constructing emerging...  相似文献   
2.
In a dissipative system with cubic–quintic nonlinearity, the curious evolution of optical vortex beams characterized by different topological charges (TCs) is simulated numerically and presented their evolution profiles. We find that new vortices will be induced during propagation, and the behavior of vortices, as affected by the TC and the number of beads of the incident beam, as well as its size, is also discussed. Common rules associated with the initial conditions coming from various incident beams are developed to determine the number of induced vortices and the corresponding rotation direction. Attributed to the nonlinearity, during propagation we see the beams slowly expand to induce new vortices, which commonly appear in oppositely charged pairs, while the net topological charge of the vortex is conserved. Our results not only deepen the understanding of optical vortices, but also widen their potential applications.  相似文献   
3.
Song  Zi-Long  Zhu  Yun  Liu  Jing-Rui  Guo  Shu-Ke  Gu  Yu-Cheng  Han  Xinya  Dong  Hong-Qiang  Sun  Qi  Zhang  Wei-Hua  Zhang  Ming-Zhi 《Molecular diversity》2021,25(1):205-221
Molecular Diversity - Based on the strategy of diversity-oriented synthesis and the structures of natural product pimprinine and streptochlorin, two series of novel pimprinine derivatives...  相似文献   
4.
《中国化学快报》2020,31(6):1415-1421
Electrocatalytic CO_2 reduction(CO_2 ER) into formate is a desirable route to achieve efficient transformation of CO_2 to value-added chemicals,however,it still suffers from limited catalytic activity and poor selectivity.Herein,we develop a hybrid electrocatalyst composed of bismuth and bismuth oxide nanoparticles(NPs) supported on nitrogen-doped reduced graphene oxide(Bi/Bi_2 O_3/NrGO) nanosheets prepared by a combined hydrothermal with calcination treatment.Thanks to the combination of undercoordinated sites and strong synergistic effect between Bi and Bi_2 O_3,Bi/Bi_2 O_3/NrGO-700 hybrid displays a promoted CO2 ER catalytic performance and selectivity for formate production,as featured by a small onset potential of-0.5 V,a high current density of-18 mA/cm~2,the maximum Faradaic efficiency of85% at-0.9 V,and a low Tafel slope of 166 mV/dec.Experimental results reveal that the higher CO_2 ER performance of Bi/Bi_2 O_3/NrGO-700 than that of Bi NPs supported on NrGO(Bi/NrGO) can be due to the partial reduction of Bi_2 O_3 NPs into Bi,which significantly increases undercoordinated active sites on Bi NPs surface,thus boosting its CO_2 ER performance.Furthermore,a two-electrode device with Ir/C anode and Bi/Bi_2 O_3/NrGO-700 cathode could be integrated with two alkaline batteries or a planar solar cell to achieve highly active water splitting and CO_2 ER.  相似文献   
5.
The complex-scaled Green's function(CGF)method is employed to explore the single-proton resonance in 15F.Special attention is paid to the first excited resonant state 5/2+,which has been widely studied in both theory and experiments.However,past studies generally overestimated the width of the 5/2+state.The predicted energy and width of the first excited resonant state 5/2+by the CGF method are both in good agreement with the experimental value and close to Fortune's new estimation.Furthermore,the influence of the potential parameters and quadruple deformation effects on the resonant states are investigated in detail,which is helpful to the study of the shell structure evolution.  相似文献   
6.
Building individual brain networks form the single volume of anatomical MRI is a challenging task. Furthermore, the high-order connectivity of morphological networks remains unexplored. This paper aimed to investigate the individual high-order morphological connectivity from anatomical MRI. Towards this goal, a unified framework based on six feature distances (euclidean, seuclidean, mahalanobis, cityblock, minkowski, and chebychev) was proposed to derive high-order interregional morphological features. The test-retest datasets and the healthy aging datasets were applied to analyze the reliability and the inter-subject variability of the novel features. In addition, the predictive models based on these novel features were established for age estimation. The proposed six neuroanatomical features exhibited significant high-to-excellent reliability. Certain connections were significantly correlated to biological age based on the six novel metrics (p < .05, FDR corrected). Moreover, the predicted age were significantly correlated to the original age in each regression task (r > 0.5, p < 106). The results suggested that the novel high-order metrics were reliable and could reflect individual differences, which could be beneficial for current methods of individual brain connectomes.  相似文献   
7.
We report on the largest open-shell graphenic bilayer and also the first example of triply negatively charged radical π-dimer. Upon three-electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2 (Ar=2,6-dimethylphenyl) ( 1 2) was transformed to a triply negatively charged species 1 23.−, which has been characterized by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID). 1 23.− features a 96-center-3-electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π-fused rings with 96 conjugated sp2 carbon atoms. Spin frustration is observed with the frustration parameter f>31.8 at low temperatures in 1 23.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.  相似文献   
8.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
9.
Single-pulse shock-tube experiments were used to study the thermal decomposition of selected oxygenated hydrocarbons: Ethyl propanoate (C2H5OC(O)C2H5; EP), propyl propanoate (C3H7OC(O)C2H5; PP), isopropyl acetate ((CH3)2HCOC(O)CH3; IPA), and methyl isopropyl carbonate ((CH3)2HCOC(O)OCH3; MIC) The consumption of reactants and the formation of stable products such as C2H4 and C3H6 were measured with gas chromatography/mass spectrometry (GC/MS). Depending on the considered reactant, the temperatures range from 716–1102 K at pressures between 1.5 and 2.0 bar. Rate-coefficient data were obtained from first-order analysis. All reactants primarily decompose by six-center eliminations: EP → C2H4 + C2H5COOH (propionic acid); PP → C3H6 + C2H5COOH; IPA → C3H6 + CH3COOH (acetic acid); MIC → C3H6 + CH3OC(O)OH (methoxy formic acid). Experimental rate-coefficient data can be well represented by the following Arrhenius expressions: k(EP → products) = 1013.49±0.16 exp(−214.95±3.25 kJ/mol/RT) s−1; k(PP → products) = 1012.21±0.16 exp(–191.21±2.79 kJ/mol/RT) s−1; k(IPA → products) = 1013.10±0.31 exp(–186.38±5.10 kJ/mol/RT) s−1; k(MIC → products) = 1012.43±0.29 exp(–165.25±4.46 kJ/mol/RT) s−1. The determination of rate coefficients was based on the amount of C2H4 or C3H6 formed. The potential energy surface (PES) of the thermal decomposition of these four reactants was determined with the G4 composite method. A master-equation analysis was conducted based on energies and molecular properties from the G4 computations. The results indicate that the length of a linear alkyl substituent does not significantly influence the rate of six-center eliminations, whereas the change from a linear to a branched alkyl substituent results in a significant reactivity increase. The comparison between rate-coefficient data also shows that alkyl carbonates have higher reactivity towards decomposition by six-center elimination than esters. The results are discussed in in the context of reactivity patterns of carbonyl compounds.  相似文献   
10.
Photocatalytic reduction of CO2 is one important approach to alleviate greenhouse gas emission and energy crisis, which has gained huge attention in the past decades. However, the lack of understanding complex reaction mechanism impedes new catalysts design. It is also very difficult to understand the mechanism by using only experimental approaches. For this concern, theoretical calculations can effectively supplement the experimental deficiency and thus play an important role. Recently theoretical calculations have been performed on adsorption, migration and reduction of CO2 molecule on the photocatalyst surface, leading to useful information that have contributed greatly to this field. This review summarizes recent advances in first-principles calculations about CO2 photoreduction over various semiconductor photocatalysts like metal oxides, sulfides and g-C3N4. The methods, models, adsorption and reaction pathways have been discussed in detail. The perspective about future investigation on the photocatalytic reduction of CO2 using first principles calculations is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号